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The frequency spectrum of a disordered one-dimensional chain is calculated using a self-consistent field 
approximation. By requiring that the phonon scattering amplitudes satisfy a certain requirement of analytic 
self-consistency, an implicit equation for the phonon self-energy function is obtained. This equation turns 
out to be exactly soluble, and leads to a spectral function which possesses no singularities and which exhibits 
a very flat, broad impurity band. 

IN a previous publication one of the present authors 
(J.S.L.) discussed a multiple scattering technique 

for the calculation of the frequency spectrum of an 
isotopically disordered one-dimensional lattice.1 I t was 
shown that, for small impurity concentrations, the 
spectrum could be determined from the amplitudes for 
scattering of a phonon by a single impurity or small 
clusters of impurities. In the interesting case of light 
impurities, these scattering amplitudes contained poles 
associated with high-frequency localized modes, and 
these poles gave rise to new bands at the upper end of 
the frequency spectrum. Furthermore, these impurity 
bands turned out to be narrow and spikey, i.e., the 
spectral function contained a set of infinite discon­
tinuities. However, certain mathematical features of the 
solution led the author to speculate that these singu­
larities would not be present in a calculation in which 
the analytic properties of the scattering amplitudes were 
taken into account more nearly self-consistently. In 
this note we should like to describe a nontrivial self-
consistent field approximation which satisfies these re­
quirements of analyticity, which leads to exactly soluble 
equations for the one-dimensional model lattice, and 
which does, in fact, remove the unpleasant singularities 
from the frequency spectrum. 

We begin with a brief review of the previous results. 
The spectral function is given by 

2co 
(« )= l im — E 5 ( V - c o 2 ) 

N*» N n 

2co 1 
= — lim — ImTr£>(co2-We), 

(1) 

where the 0 n are the normal mode frequencies of a 
chain of N atoms and D is the phonon Green's function. 
For any particular configuration of impurities, D may 
be written as a matrix in a wave number representation; 
i.e., in the representation whose basic states are the 
phonon eigenstates of the pure lattice. Upon averaging 

* Supported in part by the National Science Foundation. 
f This work will constitute part of a Ph.D. thesis to be sub­

mitted to Carnegie Institute of Technology by R. W. D. 
1 J. S. Langer, J. Math, Phys. 2, 584 (1961). Hereafter referred 

to as L 

over all configurations of impurities we regain transla-
tional symmetry and D becomes diagonal. Thus, ac­
cording to the analysis of I, we may write 
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where the co '̂s are the eigenfrequencies of the unper­
turbed lattice and Gk(u>2) is a self-energy function. 

To lowest order in the concentration of impurities q, 
Gk(w2) turns out to be proportional to the forward 
scattering amplitude for a phonon incident on an iso­
lated impurity. That is 

Gk(rf) = Nqh,k&
2), 

and tk,kf(o)2) satisfies the equation 
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Here \=M/Mf—1, where M and M' are the masses of 
the host and impurity atoms, respectively. Notice that 
the quantity Xco^/iV plays the role of the phonon-
impurity interaction, and that the quantity (GO&2—CO2)-1 

is the unperturbed propagator. 
From very general principles, we know that the exact 

expressions for D and G have very similar analytic 
properties. In particular, both functions are analytic 
everywhere in the w plane except along the real axis 
where there are branch cuts. These branch cuts occur 
wherever the spectral function g(u>) is nonzero. In the 
approximation described by Eqs. (2), (3), and (4), D 
and G both have branch cuts coinciding with the single 
acoustic band of the unperturbed lattice. If a local 
mode exists, however, Gh(o>2) has a simple pole at the 
local mode frequency w0; Dk(u>2) has a similar pole near 
co0, the exact position depending upon k; and g(w) is 
nonzero in a narrow band in this region. In a more 
accurate approximation, we know that both D and G 
should have branch cuts coinciding with this impurity 
band. 

We may automatically satisfy the requirement of 
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analytic self-consistency by modifying Eq. (4) to read 

Aw*'2 1 

N N *" 

According to Eq. (2), this means 

h,k'(o>2)=-
0>k" 

ik» ,*(<*). (6) 
N Nk» w^2-a>2+G^(co2) 

The kernel of this equation is separable; thus, it may be 
solved easily, with the result 

where O>M is the maximum frequency of the unperturbed 
chain. Thus, y is determined by the purely algebraic 
equation, 

?X(l+7) 
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Finally, the averaged spectral function is given by 
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According to (9) and (12), (14) becomes 
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Then, because Gk(o)2) — Nqtk,k(o)2), we find the following 
implicit equation for the self-energy function: 

A X oik"2 \ 
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Equation (8) may be compared with the corresponding 
result obtained from Eq. (4), which is 
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where Y(CO2) is the solution of (13). 
The general features of the spectral function g(oi) 

now may be deduced from an examination of the roots 
of the algebraic equation (13). First, we make the fol­
lowing transformation of variables: 

ri(x) = 

A X co*"2 \ 
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In diagrammatical language, we may say that, in Eq. 
(8), we have replaced the unperturbed Green's function 
by the exact one in each of the phonon lines of the dia­
grams which contributed to (8'). The solution of (8) 
is thus equivalent to the summation of a very large 
class of diagrams. 

We may solve Eq. (8) quite easily because Gk(oo2) 
depends on k only through the factor oik2. Therefore, 
if we write 

G*(CO2) = T ( C O W , (9) 
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then T(CO2) satisfies 

7(co2) = g X / 1 + - E 
wr 

Equation (18) has been derived from (13) by making 
the substitution (16) and factoring out (x+l/rj) in the 
numerator and denominator of the right-hand side. 
We are left with a quartic equation with real 
coefficients. 

In the case of vanishingly small q, we know that 
(18) must have a solution which approaches the spectral 
function for the unperturbed lattice, i.e., 
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I t is convenient to rewrite (10) in the form 
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In the limit N —* 00, the sum in this expression becomes 
an integral and is readily evaluated (see I ) : 
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- 0 , x>l. 

Accordingly, we regroup the terms in (18) as follows: 

f(v)=L(i-x2W+iTW+xv-il 
+q\r)2(xV-l) = 0. (20) 

At g=0 , f(rj) always has two real roots at 

\rp+xn-1 = 0. (21) 

For x<l, the other two roots are pure imaginary; for 
x>\ they are real, and Eq. (19) follows immediately. 
The function f(rj) relevant to this unperturbed situation 
is drawn in Fig. 1. Next consider small but finite values 
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FIG. 1. Behavior 
of quartic equation 
for £=0. 

of q. As long as we are far from the band edge, i.e., x is 
less than and not too close to unity, the picture drawn 
in Fig. 1 remains qualitatively correct and g(x) will not 
be much different from go(x). For sufficiently small 
values of l—x2, however, there will be some region 
along the negative rj axis where the cubic term in (20) 
will be stronger than the quartic term. The resulting 
curve will look something like Fig. 2. Notice that we 
have drawn four real roots of /(r/) for x<l. In other 
words, for sufficiently small q, g(x) may go to zero below 
the edge of the unperturbed acoustic band. The new 
band edge will occur at that value of x where the roots 
A and B merge in Fig. 2. 

If q is small (and X is not too small), both roots A 
and B will occur at large negative values of ??, whereas 
C and D will remain relatively close to 77=0. In this 
case we may investigate the behavior of g(x) near the 
new band edge by assuming that the roots C and D are 
still given accurately by (21) and factoring them out of 
(20). The resulting quadratic equation 

23^+ W +l- / l+-W 

has the roots 
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Thus, the new band edge (^A — VB) occurs at 
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FIG. 2. Behavior 

of quartic near un­
perturbed band edge 
for small but finite 
concentration of im­
purities. 
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It is apparent that the self-consistent spectral function 
peaks and then goes to zero with infinite slope instead 
of becoming singular at the top of the band. Detailed 
numerical calculations confirm that, for small q, Eq. 
(25) is a very accurate representation of g near the 
band edge (see Fig. 4). 

As was pointed out in I, the band gap must dis­
appear for large enough values of the concentration q. 
We now may see in some detail how this happens. Con­
sider values of x so close to unity (the unperturbed 
band edge) that root A in Fig. 2 is very far out along 
the negative rj axis. Then f(rj) will be well approximated 
by a cubic expression obtained by setting #= 1 in (20). 
As we have seen, this cubic will have three real roots 
B, C, and D for small q. As q increases, however, roots 
B and C merge and then become complex. In the case of 
a three-to-one mass ratio (X=2), for example, the 
critical value of q is about 0.22. For concentrations 
greater than the critical q, g(x) will be nonzero through­
out the region near #= 1. 

The complete spectral function for the case M/Mf—3, 
#=Xfr is shown in Fig. 3. We have obtained this curve 
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FIG. 3. Spectral function for the case M/M'=3, q=ro-

by direct numerical solution of Eqs. (17) and (18). That 
is, we have found two real roots of (18) numerically, 
factored these out, and then solved the remaining quad­
ratic equation.2 

In Fig. 3, we have plotted for comparison the spec­
trum computed in I for the same choice of parameters 
q and X. As discussed above, the low-frequency acoustic 
bands are identical except in the very immediate 
neighborhood of the band edge. The function near the 
band edge is shown in more detail in Fig. 4. In our new 
approximation, however, the impurity band has be­
come quite broad and flat. It seems likely that the 
broad band is an accurate representation of the average 
energy distribution of the impurity modes. On the other 
hand, having omitted all higher order effects associated 

2 For the parameters chosen it turns out that f(rj) always does 
have two real roots and that the complex roots do, in fact, occur 
on what we might call the "physical sheet" of the function r}(x). 
That this is not always true may be seen by examining f(r)) for 
any negative value of X, in which case rj (x) has an unphysical 
branch cut which must not be included in the spectral function #. 
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with clusters of impurities, we cannot hope to duplicate 
the detailed structure which we expect to exist at the 
high-frequency end of the spectrum.3 In other words, 
the present calculation probably gives a g(x) which is 
suitable for calculation of the specific heat but which 

3 P. Dean, Proc. Roy. Soc. (London) 260, 263 (1961). 

is not adequate for, say, transport calculations where 
the detailed dynamics of the system may be more 
important. 

Apropos of the broad impurity band, we should men­
tion that Flinn, Maradudin, and Weiss4 have found a 
spectrum in remarkably good agreement with Fig. 3 
using a completely different method. Also, it appears to 
be characteristic of the self-consistent field approxima­
tion to broaden the spectrum of allowed eigenvalues 
from that obtained using (4) or its analog. Klauder5 

has found this to be the case in his study of electron 
spectra in disordered metals. 

4 P. A. Flinn, A. A. Maradudin, and G. H. Weiss, Westinghouse 
Research Report (unpublished). 

6 J. R. Klauder, Ann. Phys. (N.Y.) 14, 43 (1961). 
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An expression for the field-emission current in a longitudinal magnetic field is derived in the zero-tempera­
ture limit. Two cases are considered, corresponding to constant Fermi energy (A) and constant electron 
density (B). In both cases the calculated current density contains an oscillatory contribution periodic in 
1/H, as well as a term which decreases as the square of the magnetic field. In case B, however, an oscillatory 
contribution appears that is absent in case A. Since the two oscillatory terms in case B differ in phase and 
their amplitudes depend on different powers of H, it should be possible to distinguish between cases A and 
B. The current-decrease quadratic in H has its origin in the steady diamagnetism of the electron gas. Using 
accepted values of effective mass, Fermi energy, and work function, we find that for bismuth the predicted 
variations of the emission current with magnetic field should be readily observable. 

INTRODUCTION 

THE effects of a strong magnetic field upon the 
physical properties of metals, semimetals, and 

semiconductors have received considerable attention 
in recent years.1 Much of the impetus derived from the 
lucid exposition of Lifshitz and co-workers2 who demon­
strated the far-reaching inferences that could be drawn 
from measurements of magnetoresistance and Hall 
effect on pure single crystals at low temperatures. At 
the same time, Harrison's work3 provided a simple link 
between de Haas-van Alphen data and what had 
appeared to be very complicated band structures of 

* Supported by the Office of Aerospace Research of the U. S. 
Air Force under contract AF49(638)-70. 

1 High Magnetic Fields (John Wiley & Sons, Inc., New York, 
and Tech Press, Cambridge, Massachusetts, 1962), cf. particularly 
Part III . 

2 1 . M. Lifshitz and V. G. Peschanskii, Zh. Eksperim. i Teor. 
Fiz. 35, 1251 (1958); 38, 180 (1960) [translations: Soviet Phys.— 
JETP 8, 875 (1959); 11, 131 (I960)]. N. E. Alekseevskii, Yu. P. 
Gaidukov, I. M. Lifshitz, and V. G. Peschanskii, ibid. 39, 1201 
(1960) [translation: ibid. 12, 837 (1961)]. 

3 W. A. Harrison, Phys. Rev. 126, 497 (1962); 118, 1190 (1960); 
116, 555 (1959). 

most polyvalent metals. Finally, improved techniques 
of crystal purification and growth, the attainment of 
magnetic fields of better than 105 G by pulse techniques, 
and the development of improved experimental tech­
niques account for the rapid accretion in recent years 
of de Haas-van Alphen, Shubnikov-de Haas, cyclotron 
resonance, and related data on a host of conductors.4 

Application of a magnetic field to a free-electron gas 
gives rise to highly degenerate energy levels separated 
bytia>—(5*H— efiH/rn*c as well as to regular singularities 
in the density-of-states function, thereby exerting a 
profound influence on any physical property either 
directly or indirectly related to the electronic system. 
Variations of the magnetic susceptibility, of the specific 
heat, and of the transport properties periodic in H~l are 
the direct effects most frequently investigated. The 
only indirect effect that has been studied is the in­
fluence of a magnetic field on the velocity of sound.5 

4 The Fermi Surface, edited by W. A. Harrison and M. B. Webb 
(John Wiley & Sons, Inc., New York, 1960). 

5 M. J. Harrison, Phys. Rev. Letters 9, 299 (1962); J. J. Quinn 
and S. Rodriguez, ibid. 9, 145 (1962). 


